Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Vector or Cross Product exercise 24.1 question 19

Answers (1)

Answer        : \frac{1}{\sqrt{165}}(10 \hat{\imath}+7 \hat{\jmath}-6 \hat{k})

Hint             : To solve this equation , we use determination method

Given          : A=(3,-1,2)


                    \begin{aligned} &B=(1,-1,-3) \\\\ &C=(4,-3,1) \end{aligned}

Solution     : \overrightarrow{A B}=-2 \hat{\imath}-5 \hat{k}

                    \begin{aligned} &\overrightarrow{A C}=\hat{\imath}-2 \hat{\jmath}-\hat{k} \\\\ &\vec{C}=x \overrightarrow{A B}+y \overrightarrow{A C} \end{aligned}

If \vec{a} is perpendicular to \vec{c}

\vec{d} is perpendicular to \overrightarrow{AB} ,\vec{d} perpendicular to \overrightarrow{AC}

\begin{aligned} &\vec{d}=\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ -2 & 0 & -5 \\ 1 & -2 & -1 \end{array}\right| \\\\ &=-10 \hat{\imath}-7 \hat{\jmath}+4 \hat{k} \\\\ &\hat{d}=\frac{\vec{d}}{|\vec{d}|}=\frac{-10 \hat{\imath}-7 \hat{\jmath}+4 \hat{k}}{\sqrt{165}} \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads