Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma Maths Class 12 Chapter 24 Vector or Cross Product exercise Very Short Answer Question, question 20.

Answers (1)

ANSWER:

\frac{\pi}{4}

HINT:

Use formula of  cross product and dot product and equating them.

GIVEN:

\overrightarrow{a} and \overrightarrow{b} be two  unit vectors

SOLUTION:

Such that |\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|

Let,

\theta be the angle between two vectors.

\begin{aligned} |\vec{a} \times \vec{b}| &=|\vec{a}||\vec{b}| \sin \theta \cdots(i) \\ \vec{a} \cdot \vec{b} &=\vec{a}|| \vec{b} \mid \cos \theta \cdots(i i) \end{aligned}

Equating (i) and (ii)

\begin{gathered} |\vec{a}||\vec{b}| \sin \theta=|\vec{a}||\vec{b}| \cos \theta \\ \therefore \sin \theta=1 \end{gathered}

\therefore \frac{\sin \theta}{\cos \theta }=1

\tan \theta =1

\theta =\frac{\pi}{4}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads