Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 24 Vector or Cross Product Exercise Very Short Answer Question, question 1 Maths textbook solution.

Answers (1)

ANSWER:

| \vec{a} \times \vec{b}|=| \vec{a}|| \vec{b} \mid \operatorname{\sin} \theta \widehat{n}

HINT:

  Use the formula of cross product to prove

GIVEN:  \overrightarrow{a} and \overrightarrow{b}

SOLUTION:

  Any two vectors whose vector product is to be defined. So let any two vectors  \overrightarrow{a} and \overrightarrow{b} as non-zero  vectors.

Then, vector product \left | \overrightarrow{a} \times \overrightarrow{b} \right | is defined as | \vec{a}|| \vec{b} \mid \operatorname{\sin} \theta \widehat{n} where \theta is angle between \overrightarrow{a}\times \overrightarrow{b}.

A unit vector \widehat{n}  is used to show direction which is perpendicular  to both vectors.

Thus

| \vec{a} \times \vec{b}|=| \vec{a}|| \vec{b} \mid \operatorname{\sin} \theta \widehat{n}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads