Please Solve RD Sharma Class 12 Chapter 29 Linear Programming Exercise 29.4 Question 33 Maths Textbook Solution.
Answer:The answer of the given question is that maximum profit is Rs.2375, 25 units of A and 125 units of B should be manufactured.
Hint:
By using the mathematical formulation of the given Linear programming is Max Z=ax + by
Given:
Total capacity of 500man-hour. It takes 5 hours to produce unit A and 3 hours to produce unit B.
Solution:
Let x units of Product A and y units of Product B were manufactured.
Clearly,
It takes 5 hours to produce a unit of A and 3 hours to produce a unit of B. The two products are produced in a common production process, which has total capacity of 500 man-hours.
The maximum number of unit of A that can be sold is 70 and that for B is 125.
If the profit is Rs.20 per unit for the product A and Rs.15 per unit for the product B. Therefore, profit x units of product A and y units of product B is Rs.20x and 15y respectively.
Total Profit
The mathematical formulation of the given problem is
Max
Subject to
First we will convert in equation into equations as follows:
Region represented by : the line meets the coordinate axes at A1(100,0) and B1 respectively.
By joining these points we obtain the line . Clearly (0,0) satisfies the . So
The region which contains origin represents the solution set of the in equation .
Region represented by .
The line x = 70 is the line passes through C1(70,0) and is parallel to y-axis. The region to the left of the line x = 70 will satisfy the in equation .
Region represented by
The line y = 125 is the line passes through D1(0,125) and is parallel to x-axis. The region below the line
y=125 will satisfy the in equation .
Region represented by
Since, every point in the first quadrant satisfies these in equations. So the first quadrant is the region represented by the in equation
The feasible region determined by the system of constraints are as follows:
The corner points are O(0,0), D(0,125), E(25,125), F(70,50) and C(70,0). The values of Z at the corner points are:
Corner Points |
|
O |
0 |
1875 |
|
2375 |
|
2150 |
|
1400 |
The maximum value of Z is 2375 which is at E1(25,125)
Thus, the maximum profit is Rs.2375. 25 units of A and 125 units of B should be manufactured.