Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Straight Line in Space exercise 24.1 question 3 sub question (i) maths textbook solution

Answers (1)

Answer   :\frac{1}{3}(-\hat{\imath}+2 \hat{\jmath}+2 \hat{k})

Hint         : To solve this equation , use magnitude and \vec{a} \times \vec{b}

Given      :4 \hat{\imath}-\hat{\jmath}+3 \hat{k} ;-2 \hat{\imath}+\hat{\jmath}-2 \hat{k}

Solution :\vec{a}=4 \hat{\imath}-\hat{\jmath}+3 \hat{k}

                \vec{b}=-2 \hat{\imath}+\hat{\jmath}-2 \hat{k}

\begin{aligned} \vec{a} \times \vec{b} &=\left|\begin{array}{ccc} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 4 & -1 & 3 \\ -2 & 1 & -2 \end{array}\right| \\\\ &=\hat{i}(1 \times 2-3 \times 1)-\hat{j}(4 \times-2-3 \times-2)+\hat{k}(4 \times 1-(-1 \times-2)) \end{aligned}

            =-\hat{i}+2 \hat{j}+2 \hat{k}

\begin{aligned} &|\vec{a} \times \vec{b}|=\sqrt{(-1)^{2}+2^{2}+2^{2}} \\ \end{aligned}

            \begin{aligned} &=\sqrt{9} \\\\ &=3 \\\\ &\frac{\vec{a} \times \vec{b}}{|\vec{a}+\vec{b}|}=\frac{1}{3}(-\hat{\imath}+2 \hat{\jmath}+2 \hat{k}) \end{aligned}

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads