Get Answers to all your Questions

header-bg qa

Provide solution RD Sharma maths class 12 chapter maxima and minima exercise 17.2 question 9 maths textbook solution

Answers (1)


There  is no   local maxima and  local minima of f\left ( x \right ) at interval (0,π)


Use first derivative test to find the point and value of local maxima or local minima.


f(x)=\operatorname{Cos} x \quad 0<x<\pi


f(x)=\operatorname{Cos} x  

Differentiating  f\left ( x \right )with respect to ‘x’ then,

\begin{aligned} &\frac{d}{d x}\{f(x)\}=\frac{d}{d x} \operatorname{Cos} x \\ &\because f^{\prime}(x)=-\sin x\left[\because \frac{d(\cos x)}{d x}=-\sin x\right] \end{aligned}

By first derivative test, for local maxima or local minima ,we have

\begin{aligned} &f^{\prime}(x)=0 \\ &\Rightarrow-\sin x=0 \Rightarrow \operatorname{Sin} x=0 \\ &\Rightarrow x=n \pi \quad ; \mathrm{n} \in \mathbb{Z} \\ &\Rightarrow \mathrm{x}=0, \pi,-\pi, 2 \pi,-2 \pi \ldots . \end{aligned}

But these points of x lies outside the interval (0,π)

So there is no local maxima and minima will exist in the interval (0,π)

Posted by


View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support