Get Answers to all your Questions

header-bg qa

Explain solution for RD Sharma maths class 12 chapter 28 The Plane exercise 28.6 question 10 maths textbook solution

Answers (1)

Answer:

              Therefore, required equation of the plane is 2x+2y+-3x+3=0

Hint:

              Using the formula a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0

Given:

              Points \left ( -1,1,1 \right )and\left ( 1,-1,1 \right ) plane x+2y+2z=5

Solution:

We know that solution of a plane passing through \left ( x_{1} ,y_{1},z_{1}\right )is given as

                                                            a\left ( x+x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0

The required plane is passing through \left ( -1,1,1 \right )

So, the equation of the plane is,

a\left ( x+1 \right )+b\left ( y-1 \right )+c\left ( z-1 \right )=0                            (1)

Plane (1) also passing through \left ( 1,-1,1 \right )

So \left ( 1,-1,1 \right )must satisfy the equation of plane

                                                      a\left ( 1+1 \right )+b\left ( -1-1 \right )+c\left ( 1-1 \right )=0

2a-2b=0                                                             (2)

Plane x+2y+2z=5is perpendicular to the required plane

We know that planes a_{1}x+b_{1}y+c_{1}z+d_{1}=0 and a_{2}x+b_{2}y+c_{2}z+d_{2}=0are right angle

If a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0                                    (a)

Using (a) we have

                                                             a\left ( 1 \right )+b\left ( 2 \right )+c\left ( 2 \right )=0

a+2b+2c=0                                                     (3)

Solving (2) and (3) we get

                                                      \begin{gathered} \frac{a}{(-2) \times 2-2 \times 0}=\frac{b}{1 \times 0-2 \times 2}=\frac{c}{2 \times 2-1 \times(-2)} \\ \frac{a}{-4-0}=\frac{b}{0-4}=\frac{c}{4+2} \\ \frac{a}{-4}=\frac{b}{-4}=\frac{c}{6}=\lambda \\ a=-4 \lambda, b=-4 \lambda, c=6 \lambda \end{gathered}

Putting the value of a, b and c in equation (1) we get

                                                                                      \begin{aligned} &(-4 \lambda)(x+1)+(-4 \lambda)(y-1)+6 \lambda(z-1)=0 \\ &-4 \lambda x-4 \lambda-4 \lambda y+4 \lambda+6 \lambda z-6 \lambda=0 \\ &-4 \lambda x-4 \lambda y+6 \lambda z-6 \lambda=0 \end{aligned}

Dividing by \left ( -2\lambda \right )we get

                                                                             2x+2y-3z+3=0

So the required plane is 2x+2y-3z+3=0

Posted by

Infoexpert

View full answer