Get Answers to all your Questions

header-bg qa

Provide solution for RD sharma maths class 12 chapter 28 The Plane exercise 28.8 question 10

Answers (1)

The answer of the given question is \vec{ r}.\left (4\hat{i}+2\hat{j}-4\hat{k} \right )+6=0  or  \vec{ r}.\left (-2\hat{i}+4\hat{j}+4\hat{k} \right )+6=0

Hint:-  We know that, equation of a plane passing through the line of intersection of two planes

 a_{1}x+b_{1}y+c_{1}z+d_{1}=0 and a_{2}x+b_{2}y+c_{2}z+d_{2}=0  is given by

(a_{1}x+b_{1}y+c_{1}z+d_{1})+k(a_{2}x+b_{2}y+c_{2}z+d_{2})=0

Given:-  \vec{r}.(\hat{i}+3\hat{j}+6)=0                                          

                \vec{r}.(3\hat{i}-\hat{j}+-4\hat{k})=0                      

Solution:-  The equation of a plane through the line of intersection of  the planes  \vec{r}.(\hat{i}+3\hat{j}+6)=0     and   \vec{r}.(3\hat{i}-\hat{j}+-4\hat{k})=0                      

\begin{gathered} \vec{r} \cdot(\hat{\imath}+3 \hat{\jmath})+6+\lambda[\vec{r} \cdot(3 \hat{\imath}-\hat{\jmath}-4 \hat{k})]=0 \\ \end{gathered}

\begin{gathered} \vec{r} \cdot[(\hat{\imath}+3 \hat{\jmath})]+6+3 \lambda \cdot \vec{r} \hat{\imath}-\vec{r} \lambda \hat{\jmath}-4 \lambda \vec{r} \hat{k}=0 \\ \end{gathered}

\begin{gathered} r(\hat{\imath}+3 \hat{\jmath}+3 \lambda \hat{\imath}-\lambda \hat{\jmath}-4 \lambda \hat{k})=-6 \\ \end{gathered}                                 ..........(i)\begin{gathered} \vec{r} \cdot \frac{[\hat{\imath}(1+3 \lambda)+\hat{\jmath}(3-\lambda)+\hat{k}(-4 \lambda)]}{\sqrt{(1+3 \lambda)^{2}+(3-\lambda)^{2}+(-4 \lambda)^{2}}}=\frac{-6}{\sqrt{(1+3 \lambda)^{2}+(3-\lambda)^{2}+(-4 \lambda)^{2}}} \\ \end{gathered}

The perpendicular distance from the origin is unity

\begin{gathered} \frac{-6}{\sqrt{(1+3 \lambda)^{2}+(3-\lambda)^{2}+(-4 \lambda)^{2}}}=1 \\ \end{gathered}

\begin{gathered} \begin{array}{c} (1+3 \lambda)^{2}+(3-\lambda)^{2}+(-4 \lambda)^{2}=36 \\ 1+9 \lambda^{2}+6 \lambda+9+\lambda^{2}-6 \lambda+16 \lambda^{2}=36 \\ \lambda^{2}=1 \\ \lambda=\pm 1 \end{array} \end{gathered}

Using equation (i) the required plane is
\vec{r}.(1\pm 3)\hat{i}+(3\mp 1)\hat{j}+(\mp 4)\hat{k}=-6\\ \vec{r}(4\hat{i}+2\hat{j}-4\hat{k})=-6\;\;\; or \;\;\; \vec{r}(-2\hat{i}+4\hat{j}+4\hat{k})=-6\\ \vec{r}(4\hat{i}+2\hat{j}-4\hat{k})+6=0\;\;\; or \;\;\; \vec{r}(-2\hat{i}+4\hat{j}+4\hat{k})+6=0\\

Posted by

Info Expert 29

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads