Get Answers to all your Questions

header-bg qa

Need solution for RD sharma maths class 12 chapter 28 The Plane exercise 28.8 question 11

Answers (1)

The answer of the given question is 7x+13y+4z=9.

Hint:-  We know that, equation of a plane passing through the line of intersection of two planes

a_{1}x+b_{1}y+c_{1}z+d_{1}=0 and a_{2}x+b_{2}y+c_{2}z+d_{2}=0  is given by

(a_{1}x+b_{1}y+c_{1}z+d_{1})+k (a_{2}x+b_{2}y+c_{2}z+d_{2})=0

Given:- 2x+3y-z+1=0 and  x+y-2z+3=0

            Plane : 3x-y-2z-4=0

Solution:-  Cartesian form of  equation of plane through the line of intersection of plane is

(A_{1}x+B_{1}y+C_{1}z+D_{1})+k (A_{2}x+B_{2}y+C_{2}z+D_{2})=0                       … (i)

Here the standard equation of plane is A_{1}x+B_{1}y+C_{1}z+D_{1}  and A_{2}x+B_{2}y+C_{2}z+D_{2}

Substituting the values in equation (i) we get

2x+3y-z+1+\lambda (x+y-2z+3)=0\\ ( 2+\lambda) x+(3+\lambda) y+(-1-2\lambda) z+1+3\lambda=0                               …(ii)

It is given that the plane 3x-y-2z-4=0 is perpendicular to the plane

We know that \phi =90^{\circ} where \cos 90^{\circ}=0  so we get

A_{1}A_{2}+B_{1}B_{2}+C_{1}C_{2}=0                                                               … (iii)

By comparing the standard equation in Cartesian form

\begin{matrix} A_{1}=2+\lambda && B_{1}=3+\lambda &&& C_{1}=-1-2\lambda \\ A_{2}=3 && B_{2}=-1 &&& C_{2}=-2 \\ \end{matrix}

Substituting these values in equation (iii)

(2+\lambda). 3+(3+\lambda)-1+(-1-2\lambda)(-2)=0

On further calculation

6+3\lambda -3-\lambda +2+4\lambda =0\\ \lambda=-\frac{5}{6}

Substituting the value of λ in equation (ii)

\left ( 2+\frac{-5}{6} \right )x+\left ( 3+\frac{-5}{6} \right )y+\left ( -1-2.\frac{-5}{6} \right )z+1+3.\frac{-5}{6}=0

 

By taking LCM

\left ( \frac{12-5}{6} \right )x+\left ( \frac{18-5}{6} \right )y+\left ( \frac{-6+10}{6} \right )z+ \frac{6-15}{6} =0

We get
7x+13y+4z-9=0\\ 7x+13y+4z=9

Posted by

Info Expert 29

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads