Get Answers to all your Questions

header-bg qa

Need solution for RD sharma maths class 12 chapter 28 The Plane exercise 28.8 question 12

Answers (1)

 The answer of the given question is 33x+45y+50z-41=0.

Hint:- We know that, equation of a plane passing through the line of intersection of two planes

a_{1}x+b_{1}y+c_{1}z+d_{1}=0 and a_{2}x+b_{2}y+c_{2}z+d_{2}=0  is given by

\left (a_{1}x+b_{1}y+c_{1}z+d_{1} \right )+k\left ( a_{2}x+b_{2}y+c_{2}z+d_{2} \right )=0

Given:-\begin{aligned} &-\vec{r} \cdot(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})-4=0 \\ \end{aligned} ........(i)

                \begin{aligned} &\vec{r} \cdot(2 \hat{\imath}+\hat{\jmath}-\hat{k})+5=0 \\ \end{aligned}.....… (ii)

Solution:-  The equation of the plane passing through the line of intersection of the plane given in equation (i) and equation (ii) is

                           
\begin{aligned} &{[\vec{r} .(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})-4]+\lambda[\vec{r} \cdot(2 \hat{\imath}+\hat{\jmath}-\hat{k})+5]=0} \\ &\vec{r}[(2 \lambda+1) \hat{\imath}+(\lambda+2) \hat{\jmath}+(3-\lambda) \hat{k}]+(5 \lambda-4)=0 \\ \end{aligned}     ............(iii)

The plane in equation (iii) is perpendicular to the plane,

\begin{aligned} &\vec{r} \cdot(5 \hat{\imath}+3 \hat{\jmath}-6 \hat{k})+8=0 \\ \end{aligned}

We know that, two planes are perpendicular if  \begin{aligned} &a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\end{aligned}

\begin{aligned} \therefore 5(2 \lambda+1)+3(\lambda+2)-6(3-\lambda)=0 \\ 19\lambda-7=0\\ \lambda=\frac{7}{19} \end{aligned}

 

Substituting \begin{aligned} \lambda=\frac{7}{19} \end{aligned} in equation (iii), we obtain

\begin{aligned} & \vec{r} \cdot\left[\frac{33}{19} \hat{\imath}+\frac{45}{19} \hat{\jmath}+\frac{50}{19} \hat{k}\right]-\frac{41}{19}=0 \\ \end{aligned}

\begin{aligned} &\vec{r} \cdot(33 \hat{\imath}+45 \hat{\jmath}+50 \hat{k})-41=0 \\ \end{aligned}                                    … (iv)

This is vector equation of the required plane

Now  \begin{aligned} &(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot(33 \hat{\imath}+45 \hat{\jmath}+50 \hat{k})-41=0 \\ \end{aligned}

\begin{aligned} &33 x+45 y+50 z-41=0 \end{aligned}

Posted by

Info Expert 29

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads