Get Answers to all your Questions

header-bg qa

Explain solution for RD Sharma maths class 12 chapter 28 The Plane exercise 28.6 question 12 maths textbook solution

Answers (1)

Answer:

              Therefore, required equation of the plane is 5x-4y-z=7

Hint:

              Using the formula a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0

Given:

              Points \left ( 1,-1,2 \right )             

              Plane 2x+3y-2z=5and x+2y-3z=8

Solution:

 We know that solution of a plane passing through \left ( x_{1},y_{1},z_{1}\right )is given as

                                           a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0            

The required plane passes through\left ( 1,-1,2 \right ).

So the equation plane is  a\left ( x-1\right )+b\left ( y+1 \right )+c\left ( z-2 \right )=0

ax+by+cz=a-b+2c                 (1)

Now the required plane is also perpendicular to the planes,

                                                   2x+3y-2z=5 & x+2y-3z=8

We know that planes a_{1}x+b_{1}y+c_{1}z+d_{1}=0  &  a_{2}x+b_{2}y+c_{2}z+d_{2}=0are the right angle

If a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0                                    (a)

Using (a) we get

2a+3b-2c=0                                    (b)

a+2b-3c=0                                       (c)

Solving (b) and (c) we get

                                                      \begin{aligned} &\frac{a}{3 \times(-3)-2 \times(-2)}=\frac{b}{1 \times(-2)-2 \times(-3)}=\frac{c}{2 \times 2-1 \times 3} \\ &\frac{a}{-9+4}=\frac{b}{-2+6}=\frac{c}{4-3} \\ &\frac{a}{-5}=\frac{b}{4}=\frac{c}{1}=\lambda \\ &a=-5 \lambda, b=4 \lambda, c=\lambda \end{aligned}

Putting values of a, b and c in equation (1) we get

                                                     \begin{aligned} &\frac{a}{3 \times(-3)-2 \times(-2)}=\frac{b}{1 \times(-2)-2 \times(-3)}=\frac{c}{2 \times 2-1 \times 3} \\ &\frac{a}{-9+4}=\frac{b}{-2+6}=\frac{c}{4-3} \\ &\frac{a}{-5}=\frac{b}{4}=\frac{c}{1}=\lambda \\ &a=-5 \lambda, b=4 \lambda, c=\lambda \end{aligned}

Dividing both the sides by\left ( -\lambda \right ), we get

                                                 5x-4y-z=7

So, the required plane is 5x-4y-z=7

Posted by

Infoexpert

View full answer