Get Answers to all your Questions

header-bg qa

Explain solution for RD Sharma maths class 12 chapter 28 The Plane exercise 28.6 question 14 maths textbook solution

Answers (1)

Answer:

              Therefore, required equation of the plane is 7x-8y+3z+25=0

Hint:

              Using the formula a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0

Given:

              Points \left ( -1,3,2 \right )              

              Plane x+2y+3z=5and 3x+3y+z=0

Solution:

 We know that solution of a plane passing through \left ( x_{1} ,y_{1},z_{1}\right ) are given as

                                           a\left ( x-x_{1} \right )+b\left ( y-y_{1} \right )+c\left ( z-z_{1} \right )=0       

The required plane passes through 

So, the equation of plane is

                                             a\left ( x+1 \right )+b\left ( y-3 \right )+c\left ( z-2 \right )=0

ax+by+cz=3b+2c-a                             (1)

Now, the required plane is also perpendicular to the planes,

                                             x+2y+3z=5  &   3x+3y+z=0

We know that planes a_{1}x+b_{1}y+c_{1}z+d_{1}=0  &  a_{2}x+b_{2}y+c_{2}z+d_{2}=0 are right angle

If a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}=0                                                  (a)

Using (a) we get

a+2b+3c=0                                                     (b)

3a+3b+c=0                                                                   (c)

Solving (b) and (c) we get

                                                       \begin{aligned} &\frac{a}{2 \times 1-3 \times 3}=\frac{b}{3 \times 3-1 \times 1}=\frac{c}{1 \times 3-3 \times 2} \\ &\frac{a}{2-9}=\frac{b}{9-1}=\frac{c}{3-6} \\ &\frac{a}{-7}=\frac{b}{8}=\frac{c}{-3}=\lambda \\ &a=-7 \lambda, b=8 \lambda, c=-3 \lambda \end{aligned}
Putting values of a, b and c in equation (1) we get

                                                     \begin{aligned} &(-7 \lambda) x+(8 \lambda) y+(-3 \lambda) z=3(8 \lambda)+2(-3 \lambda)+7 \lambda \\ &-7 \lambda x+8 \lambda y-3 \lambda z=24 \lambda-6 \lambda+7 \lambda \\ &-7 \lambda x+8 \lambda y-3 \lambda z=25 \lambda \end{aligned}
Dividing both \left ( -\lambda \right )we get

                                                       7x-8y+3z+25=0

Posted by

Infoexpert

View full answer