Get Answers to all your Questions

header-bg qa

explain solution RD Sharma class 12 chapter 5 Determinants exercise Fill in the blanks question 12 maths

Answers (1)

Answer: 5

Hint: Here, we use basic concept of determinant of matrix

Given: A is 3\times 3 matrix. So, n = 3

            |A|=5 \; \; C_{i j}=\operatorname{cofactor} \text { of } a_{i j} . \text { So, let } C_{i j}=A_{i j}, C=A

Solution: A is \left | a_{ij} \right | be a square matrix

                So, A=\left(\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right) 1 \leq i \leq 3

                \begin{aligned} &|A|=5 \\ &|A|=a_{11}\left[\begin{array}{cc} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array}\right]-a_{12}\left[\begin{array}{cc} a_{21} & a_{23} \\ a_{31} & a_{33} \end{array}\right]+a_{13}\left[\begin{array}{cc} a_{21} & a_{22} \\ a_{31} & a_{32} \end{array}\right] \\ &|A|=a_{11}\left[\begin{array}{cc} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array}\right]+a_{12}\left[\begin{array}{cc} a_{23} & a_{21} \\ a_{33} & a_{31} \end{array}\right]+a_{13}\left[\begin{array}{ll} a_{21} & a_{22} \\ a_{31} & a_{32} \end{array}\right] \end{aligned}

                                                                                                                    [Interchange column of a12]

                \begin{aligned} &\Rightarrow|A|=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13} \\ &5=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13} \\ &5=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \quad[A=C] \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads