Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter Determinants exercise multiple choise question 26

Answers (1)


Correct option (d)


Evaluate the given determinant by applying row or column operation.


Let\; \; \; \; \Delta =\begin{vmatrix} b^{2}-ab &b-c &bc-ac \\ ab-a^{2} &a-b &b^{2}-ab \\ bc-ca &c-a &ab-a^{2} \end{vmatrix}

We have to find the value of \Delta


Here\; \; \; \; \Delta =\begin{vmatrix} b^{2}-ab &b-c &bc-ac \\ ab-a^{2} &a-b &b^{2}-ab \\ bc-ca &c-a &ab-a^{2} \end{vmatrix}

        \Rightarrow \Delta =\begin{vmatrix} b(b-a) &b-c &c(b-a) \\ a(b-a) &a-b &b(b-a) \\ c(b-a) &c-a &a(b-a) \end{vmatrix}

Taking common (b-a) from column 1 and 3

        \Rightarrow \Delta=(b-a)^{2}\left|\begin{array}{lll} b & b-c & c \\ a & a-b & b \\ c & c-a & a \end{array}\right|

Here, C1 and C2 are same and if any two row or column of a matrix is identical then determinant will be zero.

        \Rightarrow \Delta=\left|\begin{array}{lll} b & b & c \\ a & a & b \\ c & c & a \end{array}\right|

        \Rightarrow \Delta=0

Hence,\; \; \; \; \begin{vmatrix} b^{2}-ab &b-c &bc-ac \\ ab-a^{2} &a-b &b^{2}-ab \\ bc-ca &c-a &ab-a^{2} \end{vmatrix}=0

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support