Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Determinants exercise multiple choise question 11

Answers (1)

Answer:

Correct option (d)

Hint:

Put x=0 in the determinant and then check the skew-symmetric.

Given:

            \begin{vmatrix} 0 &x^{2}-a &x^{3}-b \\ x^{2}+a &0 &x^{2}+c \\ x^{4}+b &x-c &0 \end{vmatrix}=0

Solution:

            \begin{vmatrix} 0 &x^{2}-a &x^{3}-b \\ x^{2}+a &0 &x^{2}+c \\ x^{4}+b &x-c &0 \end{vmatrix}

If we put x=0 in the above determinant

        \Rightarrow \begin{vmatrix} 0 &-a &-b \\ a &0 &c \\ b &-c &0 \end{vmatrix}=A(Let)

        \Rightarrow A^{T}=\begin{vmatrix} 0 &a &b \\ -a &0 &-c \\ -b &c &0 \end{vmatrix}

        \Rightarrow =\begin{vmatrix} 0 &-a &-b \\ a &0 &c \\ b &-c &0 \end{vmatrix}=-A

        \Rightarrow A^{T}=-A

Hence matrix is skew symmetric

Hence value of x is 0.

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads