Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter Determinants exercise multiple choise question 26

Answers (1)

Answer:

Correct option (d)

Hint:

Evaluate the given determinant by applying row or column operation.

Given:

Let\; \; \; \; \Delta =\begin{vmatrix} b^{2}-ab &b-c &bc-ac \\ ab-a^{2} &a-b &b^{2}-ab \\ bc-ca &c-a &ab-a^{2} \end{vmatrix}

We have to find the value of \Delta

Solution:

Here\; \; \; \; \Delta =\begin{vmatrix} b^{2}-ab &b-c &bc-ac \\ ab-a^{2} &a-b &b^{2}-ab \\ bc-ca &c-a &ab-a^{2} \end{vmatrix}

        \Rightarrow \Delta =\begin{vmatrix} b(b-a) &b-c &c(b-a) \\ a(b-a) &a-b &b(b-a) \\ c(b-a) &c-a &a(b-a) \end{vmatrix}

Taking common (b-a) from column 1 and 3

        \Rightarrow \Delta=(b-a)^{2}\left|\begin{array}{lll} b & b-c & c \\ a & a-b & b \\ c & c-a & a \end{array}\right|

Here, C1 and C2 are same and if any two row or column of a matrix is identical then determinant will be zero.

        \Rightarrow \Delta=\left|\begin{array}{lll} b & b & c \\ a & a & b \\ c & c & a \end{array}\right|

        \Rightarrow \Delta=0

Hence,\; \; \; \; \begin{vmatrix} b^{2}-ab &b-c &bc-ac \\ ab-a^{2} &a-b &b^{2}-ab \\ bc-ca &c-a &ab-a^{2} \end{vmatrix}=0

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads