Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 19 Definite Integrals Exercise 19.3 question 10

Answers (1)

Answer:

Hint: You must know the rules of solving definite integral.

Given:     \begin{aligned} &\int_{1}^{2}|x-3| d x \\ & \end{aligned}

                x-3=0 \\

                x=3

Solution:

                \begin{aligned} \mathrm{I} &=\int_{1}^{2}|x-3| d x \\ & \end{aligned}

                =\int_{1}^{2}-(x-3) d x \\

                =\left[-\left(\frac{x^{2}}{2}-3 x\right)\right]_{1}^{2}

                \begin{aligned} &l=-\left(\frac{4}{2}-6-\frac{1}{2}+3\right) \\ & \end{aligned}

                I=-\left(\frac{4}{2}-6-\frac{1}{2}+3\right) \\

                I=-\left(\frac{3}{2}-3\right)

                \begin{aligned} I &=-\frac{3}{2}+\frac{3}{1} \\ \end{aligned}

                =\frac{-3+6}{2} \\

                 =\frac{3}{2}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads