Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 19 Definite Integrals  Exercise 19.1 Question 63 Maths Textbook Solution.

Answers (1)

Answer: 8

Hint: Use indefinite formula then put the limit to solve this integral

Given: \int_{0}^{2 \pi} \sqrt{1+\sin \frac{x}{2}} d x

Solution: \int_{0}^{2 \pi} \sqrt{1+\sin \frac{x}{2}} d x=\int_{0}^{2 \pi} \sqrt{\cos ^{2} \frac{x}{4}+\sin ^{2} \frac{x}{4}+2 \sin \frac{x}{4} \cos \frac{x}{4}} d x

{\left[1=\cos ^{2} \theta+\sin ^{2} \theta, \sin 2 \theta=2 \sin \theta \cos \theta\right]}

=\int_{0}^{2 \pi} \sqrt{\left(\cos \frac{x}{4}+\sin \frac{x}{4}\right)^{2}} d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[a^{2}+b^{2}+2 a b=(a+b)^{2}\right] \\

=\int_{0}^{2 \pi}\left(\cos \frac{x}{4}+\sin \frac{x}{4}\right) d x                                                                \left[\begin{array}{l} \int \sin a x d x=\frac{-\cos a x}{a} \\ \int \cos a x d x=\frac{\sin a x}{a} \end{array}\right]

=\int_{0}^{2_{\pi}} \cos \frac{x}{4} d x+\int_{0}^{2 \pi} \sin \frac{x}{4} d x

=\left[\frac{\sin \frac{x}{4}}{\frac{1}{4}}\right]_{0}^{2 \pi}-\left[\frac{\cos \frac{x}{4}}{\frac{1}{4}}\right]_{0}^{2 \pi}

=4\left[\sin \frac{2 \pi}{4}-\sin 0\right]-4\left[\cos \frac{2 \pi}{4}-\cos 0\right]                                             \left[\begin{array}{l} \sin \frac{\pi}{2}=\cos 0=1 \\ \sin 0=\cos \frac{\pi}{2}=0 \end{array}\right]

=4\left[\sin \frac{\pi}{2}-\sin 0\right]-4\left[\cos \frac{\pi}{2}-\cos 0\right]

=4[1-0]-4[0-1]

=4+4

=8

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads