Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter 19 Definite Integrals exercise Fill in the blanks question 16 maths

Answers (1)

Answer: 2

Hint: Use \int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x

Given: \text { If } \mathrm{f}(\mathrm{a}-\mathrm{x})=\mathrm{f}(\mathrm{x}) \text { and } \int_{0}^{a} f(x) d x=K \int_{0}^{a / 2} f(x) d x

Solution:  

        \mathrm{f}(\mathrm{a}-\mathrm{x})=\mathrm{f}(\mathrm{x})                                ................(1)

We have, \int_{0}^{a} f(x) d x=K \int_{0}^{a / 2} f(x) d x

\Rightarrow \int_{0}^{a / 2} f(x) d x+\int_{0}^{a / 2} f(a-x) d x=K \int_{0}^{a / 2} f(x) d x   

                                                                                                          \left[\because \int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x\right]                   

\begin{aligned} &\Rightarrow \int_{0}^{a / 2} f(x) d x+\int_{0}^{a / 2} f(x) d x=K \int_{0}^{a / 2} f(x) d x \\\\ &\Rightarrow 2 \int_{0}^{a / 2} f(x) d x=K \int_{0}^{a / 2} f(x) d x \end{aligned}

On comparing, we get K = 2

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads