Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 19 Definite Integrals  Exercise 19.1 Question 35 Maths Textbook Solution.

Answers (1)

Answer:

            \frac{1}{2}

Hint: Use indefinite formula and put limits to solve this integral

Given: 

\int_{1}^{e}\frac{log\: x}{x}dx

Putting log x=t

            \Rightarrow \frac{1}{x}dx=dt

\Rightarrow dx=xdt

and when x=1 thent=log1=0

                                                       \left [ \because log\; 1=0 \right ]

When x=e then t=loge=1

                                                        \left [ \because log\: e=1 \right ]

Then

\begin{aligned} &\int_{1}^{e} \frac{\log x}{x} d x=\int_{0}^{1} \frac{t}{x} x d t \\ &=\int_{0}^{1} t d t \\ &=\left[\frac{t^{1+1}}{1+1}\right]_{0}^{1} \\ &=\left[\frac{t^{2}}{2}\right]_{0}^{1} \end{aligned}

\begin{aligned} &=\frac{1}{2}\left[t^{2}\right]_{0}^{1} \\ &=\frac{1}{2}\left[1^{2}-0^{2}\right] \\ &=\frac{1}{2}[1-0] \\ &=\frac{1}{2} \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads