Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter 19 Definite Integrals exercise Fill in the blanks question 14

Answers (1)

Answer: \frac{2}{\log 3}\left[3^{\sqrt{2}}-1\right]

Hint: Use \int a^{x} d x

Given: \int_{0}^{2} \frac{3^{\sqrt{x}}}{\sqrt{x}} \mathrm{dx}

Solution:  

\mathrm{I}=\int_{0}^{2} \frac{3^{\sqrt{x}}}{\sqrt{x}} \mathrm{dx}

Put

    \begin{aligned} &\sqrt{x}=t \\\\ &\frac{1}{2 \sqrt{x}} d x=d t \\\\ &\frac{d x}{\sqrt{x}}=2 d t \end{aligned}

When \mathrm{x}=0, \mathrm{t}=0

When \mathrm{x}=2, \mathrm{t}=\sqrt{2}

I=2 \int_{0}^{\sqrt{2}} 3^{t} d t

    \begin{aligned} &=\left[\frac{2}{\log 3} \cdot 3^{t}\right]_{0}^{\sqrt{2}} \\\\ &=\frac{2}{\log 3}\left[3^{\sqrt{2}}-3^{0}\right] \end{aligned}

    =\frac{2}{\log 3}\left[3^{\sqrt{2}}-1\right]

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads