Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 19 definite Integrals Exercise 19.1 Question 12 Maths Textbook Solution.

Answers (1)

Answer:log\left ( \sqrt{2}+1 \right )

Hint:: Use indefinite formula to solve the integral and then put the value of limit to get the required answer

Given: \int_{0}^{\frac{\pi }{4}}\sec xdx

Solution: \int_{0}^{\frac{\pi}{4}} \sec x d x=[\log |\sec x+\tan x|]_{0}^{\frac{\pi}{4}} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\int \sec x d x=\log |\sec x+\tan x|\right]

\left.\begin{array}{l} =\left[\log \left|\sec \frac{\pi}{4}+\tan \frac{\pi}{4}\right|-\log |\sec 0-\tan 0|\right] \\ =[\log |\sqrt{2}+1|-\log |1-0|] \end{array}\right]\left[\begin{array}{l} \sec \frac{\pi}{4}=\sqrt{2} \\ \tan \frac{\pi}{4}=1 \ \\ \sec 0=1 \\ \tan 0=0 \end{array}\right]

=log\left ( \sqrt{2}+1 \right )-log1

=log\left ( \sqrt{2}+1 \right )-0                                                                                                        \left [ log1=0 \right ]

=log\left ( \sqrt{2}+1 \right )

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads