Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma class 12 Chapter 19 Definite Integrals Exercise 19.1 Question 59 Maths textbook Solution.

Answers (1)

Answer: \pi

Hint: Use indefinite formula then put the limit to solve this integral

Given: \int_{1}^{2}\frac{1}{\sqrt{\left ( x-1 \right )\left ( 2-x \right )}}dx

Solution:

\int_{1}^{2} \frac{1}{\sqrt{(x-1)(2-x)}} d x=\int_{1}^{2} \frac{1}{\sqrt{2 x-x^{2}-2+x}} d x=\int_{1}^{2} \frac{1}{\sqrt{3 x-x^{2}-2}} d x\\

=\int_{1}^{2} \frac{1}{\sqrt{-\left(x^{2}-3 x+2\right)}} d x

=\int_{1}^{2} \frac{1}{\sqrt{-\left(x^{2}-2 x \cdot \frac{3}{2}+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+2\right)}} d x \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[a^{2}+b^{2}-2 a b=(a-b)^{2}\right]

=\int_{1}^{2} \frac{1}{\sqrt{-\left(\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}+2\right)}} d x

\begin{aligned} &=\int_{1}^{2} \frac{1}{\sqrt{-\left(\left(x-\frac{3}{2}\right)^{2}-\left(\frac{9-8}{4}\right)\right)}} d x \\ &=\int_{1}^{2} \frac{1}{\sqrt{-\left(\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{4}\right)\right)}} d x \\ &=\int_{1}^{2} \frac{1}{\sqrt{\left(\frac{1}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}}} d x \end{aligned}

Putting \left ( x-\frac{3}{2} \right )=t\Rightarrow dx=dt

When x=1 then t=1-\frac{3}{2}=\frac{2-3}{2}=\frac{-1}{2}

And When x=2  then t=2-\frac{3}{2}=\frac{4-3}{2}=\frac{1}{2}

Then \int_{1}^{2} \frac{1}{\sqrt{(x-1)(2-x)}} d x=\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{\left(\frac{1}{2}\right)^{2}-t^{2}}} d t

=\left[\sin ^{-1}\left(\frac{t}{\frac{1}{2}}\right)\right]_{\frac{-1}{2}}^{\frac{1}{2}}                                                            \left[\int \frac{1}{a^{2}-x^{2}} d x=\sin ^{-1} \frac{x}{a}\right]

=\left[\sin ^{-1}(2 t)\right] \frac{-\frac{1}{2}}{2}

=\left[\sin ^{-1}\left(2 \times \frac{1}{2}\right)-\sin ^{-1}\left(2 \times \frac{-1}{2}\right)\right]                                                        [\sin (-\theta)=-\sin \theta]

=\sin ^{-1}(1)-\sin ^{-1}(-1)

=\sin ^{-1}(1)+\sin ^{-1}(1) \\

=2 \sin ^{-1}(1)                                                                    \left [ \sin ^{-1}=\frac{\pi }{2} \right ]

=2\times \frac{\pi }{2}

=\pi

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads