Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 19 definite Integrals Exercise 19.1 Question 47 Maths Textbook Solution.

Answers (1)



Hint: Use indefinite integral formula and put the limits to solve this integral


\int_{1}^{2}\left ( \frac{x-1}{x^{2}} \right )e^{x}dx


\int_{1}^{2}\left(\frac{x-1}{x^{2}}\right) e^{x} d x=\int_{1}^{2}\left(\frac{x}{x^{2}}-\frac{1}{x^{2}}\right)e^{x}d x

=\int_{1}^{2}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) e^{x} d x

=\int_{1}^{2}\left(\frac{1}{x} e^{x}-\frac{1}{x^{2}} e^{x}\right) d x

=\int_{1}^{2} \frac{1}{x} e^{x} d x-\int_{1}^{2} \frac{1}{x^{2}} e^{x} d x

Applying integration by parts method in Ist integral, then

\int_{1}^{2}\left(\frac{x-1}{x^{2}}\right)^{x} d x=\left[\frac{1}{x} \int e^{x} d x\right]_{1}^{2}-\int_{1}^{2}\left(\frac{d}{d x}\left(\frac{1}{x}\right) \int e^{x} d x\right) d x-\int_{1}^{2} \frac{1}{x^{2}} e^{x} d x

=\left[\frac{1}{x} e^{x}\right]_{1}^{2}-\int_{1}^{2} \frac{-1}{x^{2}} e^{x} d x-\int_{1}^{2} \frac{1}{x^{2}} e^{x} d x

=\left[\frac{1}{x} e^{x}\right]_{1}^{2}+\int_{1}^{2} \frac{1}{x^{2}} e^{x} d x-\int_{1}^{2} \frac{1}{x^{2}} e^{x} d x

=\left[\frac{1}{2} \cdot e^{2}-\frac{1}{1} \cdot e^{1}\right]


Posted by


View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support