Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 19 Definite Integrals  Exercise 19.1 Question 45 Maths Textbook Solution.

Answers (1)

Answer:

\frac{57-\sqrt{3}}{5}

Hint: Use indefinite formula and put the limits to solve this integral

Given:

\int_{1}^{4}\frac{x^{2}+x}{\sqrt{2x+1}}dx

Sol:

\int_{1}^{4}\frac{x^{2}+x}{\sqrt{2x+1}}dx

Putting

\Rightarrow 2x+1=t^{2}

\Rightarrow 2dx=2tdt

\Rightarrow dx=tdt

and When x=4then

t=3

and when x=4 then

t=3

then

\int_{\sqrt{3}}^{3} \frac{\left(\frac{t^{2}-1}{2}\right)^{2}+\left(\frac{t^{2}}{2}-\frac{1}{2}\right)}{\sqrt{t^{2}}} \cdot t d t=\int_{\sqrt{3}}^{3} \frac{\frac{1}{4}\left(t^{2}-1\right)^{2}+\frac{1}{2}\left(t^{2}-1\right)}{t} \cdot t d t

=\int_{\sqrt{3}}^{3}\left(\frac{1}{4}\left(t^{4}+1-2 t^{2}\right)+\frac{t^{2}-1}{2}\right) d t

=\int_{\sqrt{3}}^{3}\left(\frac{t^{4}+1-2 t^{2}+2 t^{2}-2}{4}\right) d t

=\int_{\sqrt{3}}^{3}\left(\frac{t^{4}-1}{4}\right) d t

=\int_{\sqrt{3}}^{3}\left(\frac{t^{4}}{4}-\frac{1}{4}\right) d t

=\frac{1}{4} \int_{\sqrt{3}}^{3} t^{4} d t-\frac{1}{4} \int_{\sqrt{3}}^{3} t^{0} d t

=\frac{1}{4}\left[\frac{t^{4+1}}{4+1}\right]_{\sqrt{3}}^{3}-\frac{1}{4}\left[\frac{t^{0+1}}{0+1}\right]_{\sqrt{3}}^{3}

=\frac{1}{4}\left[\frac{t^{5}}{5}\right]_{\sqrt{3}}^{3}-\frac{1}{4}[t]_{\sqrt{3}}^{3}

=\frac{1}{20}\left[t^{5}\right]_{\sqrt{3}}^{3}-\frac{1}{4}[t]_{\sqrt{3}}^{3}

=\frac{\left[(3)^{5}-(\sqrt{3})^{5}\right]}{20}-\frac{1}{4}[3-\sqrt{3}]

=\frac{1}{4}\left[\frac{243-9 \sqrt{3}}{5}-3+\sqrt{3}\right]

=\frac{1}{4}\left[\frac{243-9 \sqrt{3}-3 \times 5+5 \sqrt{3}}{5}\right]

=\frac{1}{4}\left[\frac{243-9 \sqrt{3}-15+5 \sqrt{3}}{5}\right]

=\frac{1}{4}\left[\frac{228-4 \sqrt{3}}{5}\right]

=\frac{228}{20}-\frac{\sqrt{3}}{5}

=\frac{114}{10}-\frac{\sqrt{3}}{5}

=\frac{57}{5}-\frac{\sqrt{3}}{5}

=\frac{57-\sqrt{3}}{5}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads