Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 19 Definite Integrals exercise Fill in the blanks question 13 maths textbook solution

Answers (1)

Answer: \frac{-1}{2} \log _{e} 2

Hint: Use \tan \left(\frac{\pi}{4}+x\right)

Given: \int_{0}^{\pi / 4} \frac{1+\tan x}{1-\tan x}{\mathrm{dx}}

Solution:  

\mathrm{I}=\int_{0}^{\pi / 4} \frac{1+\tan x}{1-\tan x} \mathrm{dx}

    =\int_{0}^{\pi / 4} \frac{\tan \left(\frac{\pi}{4}\right)+\tan x}{1-\tan \left(\frac{\pi}{4}\right) \tan x} d x                            \left[\because \tan \left(\frac{\pi}{4}\right)=1\right]

    \begin{aligned} &=\int_{0}^{\pi / 4} \tan \left(\frac{\pi}{4}+x\right) d x \\ \\&=\int_{0}^{\pi / 4} \tan \left(\frac{\pi}{4}+x\right) d x \end{aligned}                                    \left[\because \tan \left(\frac{\pi}{4}+x\right)=\frac{\tan \pi / 4+\tan x}{1-(\tan \pi / 4)(\tan x)}\right]

    \begin{aligned} &=\log \left[\sec \left(\frac{\pi}{4}+x\right)\right]_{0}^{\frac{\pi}{4}} \\\\ &=\left[\log \sec \left(\frac{\pi}{2}\right)-\log \sec \left(\frac{\pi}{4}\right)\right] \end{aligned}

    \begin{aligned} & \\\\ &=0-\frac{1}{2} \log _{e}(2) \\\\ &=\frac{-1}{2} \log _{e} 2 \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads