Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter 19 Definite Integrals exercise Fill in the blanks question 18

Answers (1)

Answer: 0

Hint: Use  \int x^{n} d x

Given: \int_{-1}^{1} x|x|\; dx

Solution:  

\mathrm{I}=\int_{-1}^{1} x|x| \; dx

  =\int_{-1}^{0} x(-x) \; dx+ \int_{0}^{1} x.x \; dx                    [-x, \text { if } x<0 \quad x, \text { if } x>0]

  =-\int_{-1}^{0} x^{2}\; d x \int_{0}^{1} x^{2} \; d x

  \begin{aligned} &=-\left[\frac{x^{3}}{3}\right]_{-1}^{0}+\left[\frac{x^{3}}{3}\right]_{0}^{1} \\\\ &=0+\frac{(-1)^{3}}{3}+\frac{1}{3}-0 \\\\ &=0 \end{aligned}

 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads