Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter 19 Definite Integrals exercise Fill in the blanks question 11

Answers (1)

Answer: \frac{\pi }{8}

Hint: Use \int \frac{1}{1+x^{2}} d x

Given: \int_{0}^{\pi / 2} \frac{\sin x \cos x}{1+\sin ^{4} x} d x

Solution:  

\mathrm{I}=\int_{0}^{\pi / 2} \frac{\sin x \cos x}{1+\sin ^{4} x} d x

Put

    \begin{aligned} &\sin ^{2} x=t \\\\ &2 \sin x \cos x \; d x=d t \\\\ &\sin x \cos x \; d x=\frac{d t}{2} \end{aligned}

When \mathrm{x}=0, \mathrm{t}=0

When \mathrm{x}=\frac{\pi}{2}, \mathrm{t}=1

I=\int_{0}^{\pi / 2} \frac{\sin x \cos x}{1+\sin ^{4} x} d x

    \begin{aligned} &=\int_{0}^{1} \frac{1}{1+t^{2}} \cdot \frac{d t}{2} \\\\ &=\frac{1}{2}\left[\tan ^{-1} t\right]_{0}^{1} \end{aligned}

    \begin{aligned} &=\frac{1}{2}\left[\tan ^{-1}(1)-\tan ^{-1}(0)\right] \\\\ &=\frac{1}{2}\left[\tan ^{-1}(1)-\tan ^{-1}(0)\right] \end{aligned}

    \begin{aligned} &=\frac{1}{2}\left[\tan ^{-1}\left(\tan \frac{\pi}{4}\right)-\tan ^{-1}(\tan 0)\right] \\\\ &=\frac{1}{2}\left(\frac{\pi}{4}\right)-\frac{1}{2}(0) \\\\ &=\frac{\pi}{8} \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads