Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 19 Definite Integrals exercise Fill in the blanks question 21 maths textbook solution

Answers (1)

Answer: \frac{\pi }{4}

Hint: Using \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x

Given: \int_{0}^{\pi / 2} \frac{1}{1+\tan ^{3} x} d x

Solution:  

\begin{aligned} &\mathrm{I}=\int_{0}^{\pi / 2} \frac{1}{1+\tan ^{3} x} \mathrm{dx} \end{aligned}                                    .........(1)

\Rightarrow I=\int_{0}^{\pi / 2} \frac{1}{1+\tan ^{3}\left(\frac{\pi}{2}-x\right)} d x

\tan \left(\frac{\pi}{2}-x\right)=\cot x=\frac{1}{\tan x}

\therefore I=\int_{0}^{\pi / 2} \frac{1}{1+\frac{1}{\tan ^{3} x}}=\int_{0}^{\pi / 2} \frac{\tan ^{3} x}{\tan ^{3} x+1}...........(2)

Adding (1) and (2),

\begin{aligned} &2 I=\int_{0}^{\pi / 2} \frac{1+\tan ^{3} x}{1+\tan ^{3} x} d x \\\\ &\quad=\int_{0}^{\pi / 2} d x \end{aligned}

    \begin{aligned} &=[x]_{0}^{\pi / 2} \\\\ &=\frac{\pi}{2}-0 \end{aligned}

    \begin{aligned} &2 \mathrm{I}=\frac{\pi}{2} \\\\ &\mathrm{I}=\frac{\pi}{4} \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads