Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma Class12 Chapter Definite Integrals exercise 19.2 question 26 maths.

Answers (1)

Answer: \frac{1}{8}

Hint: We use indefinite integral formula then put limits to solve this integral.

Given: \int_{0}^{\frac{\pi}{4}} \frac{\tan^3x}{1+\cos ^22x}dx

Solution: I=\int_{0}^{\frac{\pi}{4}} \frac{\tan^3x}{1+\cos ^22x}dx

=\int_{0}^{\frac{\pi}{4}} \frac{\tan^3x}{2\cos ^2x}dx                                                    \left [ 1+\cos 2\theta =2 \cos^2 \theta \right ]

\begin{aligned} &=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \frac{\tan ^{3} x}{\cos ^{2} x} d x \\ &I=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \tan ^{3} x \sec ^{2} x d x \end{aligned}

Put \tan x=t

\sec^2 xdx=dt

When x=0  then t=0  and when x=\frac{\pi}{4}  then t=1


\begin{aligned} I &=\frac{1}{2} \int_{0}^{1} t^{3} d t \\ &=\frac{1}{2}\left[\frac{t^{3+1}}{3+1}\right]_{0}^{1} \\ &=\frac{1}{2} \cdot \frac{1}{4}\left[t^{4}\right]_{0}^{1} \\ &=\frac{1}{8}\left[1^{4}-0^{4}\right] \\ &=\frac{1}{8}[1] \\ &=\frac{1}{8} \end{aligned}

Posted by


View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support