Get Answers to all your Questions

header-bg qa

Please Solve R.D.Sharma class 12 Chapter 19 Definite Integrals Exercise 19.1 Question 10 Maths textbook Solution.

Answers (1)

Answer: 2

Hint: Use indefinite formula to solve the integral and then put the value of limit to get the required answer

Given: \int_{0}^{\frac{\pi }{2}}\left ( \sin x+\cos x \right )dx

Solution:

\int_{0}^{\frac{\pi }{2}}\left ( \sin x+\cos x \right )dx=\int_{0}^{\frac{\pi }{2}}\sin xdx+\int_{0}^{\frac{\pi }{2}}\cos \: xdx

=[-\cos x]_{0}^{\frac{\pi}{2}}+[\sin x]_{0}^{\frac{\pi}{2}} \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad\left[\begin{array}{l} \int \sin x d x=-\cos x \\ \int \cos x d x=\sin x \end{array}\right]

=-\left[\cos \frac{\pi}{2}-\cos 0\right]+\left[\sin \frac{\pi}{2}-\sin 0\right]\left[\begin{array}{l} \cos \frac{\pi}{2}=0, \cos 0=1 \\ \sin \frac{\pi}{2}=1, \sin 0=0 \end{array}\right]

=-\left ( 0-1 \right )+\left ( 1-0 \right )

=-\left ( -1 \right )+1

=1+1=2

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads