Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 19 Definite Integrals Exercise 19.3 question 27

Answers (1)

Answer:  3

Hint: You must know the rules of solving definite integral.

Given:  \int_{0}^{2} 2 x[x] d x

Solution:

                \begin{gathered} \mathrm{I}=\int_{0}^{2} 2 x[x] d x \\ \end{gathered}

                x=\left\{\begin{array}{l} 0 \leq x<1 \\ 1 \leq x<2 \\ 2 \leq x<3 \end{array}\right.

                \begin{aligned} &I=\int_{0}^{1} 2 x[x]+\int_{1}^{2} 2 x[x] d x \\ & \end{aligned}

                =\int_{1}^{2} 2 x(0) d x+\int_{1}^{2} 2 x(1) d x

                \begin{aligned} &=\left(\frac{2 x^{2}}{2}\right)_{1}^{2} \\ & \end{aligned}

                =4-1=3

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads