Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 Chapter 19 Definite Integrals Exercise Revision Exercise question 11

Answers (1)

Answer:  2-\frac{\pi}{2}

Given: \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{(1+\cos x)^{2}} d x

Hint:

Use the formula  and then apply integration rule by parts method.

Solution:

\begin{aligned} &\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{(1+\cos x)^{2}} d x \\ & \end{aligned}

=\int_{0}^{\frac{\pi}{2}} \frac{1-\cos ^{2} x}{(1+\cos x)^{2}} d x

\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \frac{1-\cos x}{(1+\cos x)} d x \\ & \end{aligned}

=\int_{0}^{\frac{\pi}{2}} \frac{1-\cos x-1+1}{1+\cos x} d x

\begin{aligned} &=\int_{0}^{\frac{\pi}{2}} \frac{2-(1+\cos x)}{1+\cos x} d x \\ & \end{aligned}

=\int_{0}^{\frac{\pi}{2}} \frac{2}{1+\cos x} d x-\int_{0}^{\frac{\pi}{2}} \frac{1+\cos x}{1+\cos x} d x

\begin{aligned} &=2 \int_{0}^{\frac{\pi}{2}} \frac{(1-\cos x)}{\left(1-\cos ^{2} x\right)} d x-\frac{\pi}{2} \\ & \end{aligned}

=2 \int_{0}^{\frac{\pi}{2}} \frac{(1-\cos x)}{\sin ^{2} x} d x-\frac{\pi}{2}

\begin{aligned} &=2 \int_{0}^{\frac{\pi}{2}} \cos e c^{2} x-\operatorname{cosec} x \cdot \cot x d x-\frac{\pi}{2} \\ & \end{aligned}

=2(-\cot x+\cos e c x)_{0}^{\frac{\pi}{2}}-\frac{\pi}{2} \\

=2(-0+1+0)-\frac{\pi}{2} \\

=2-\frac{\pi}{2}

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads