Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma Maths Class 12 Chapter 19 Definite Integrals Excercise 19.3 Question 21

Answers (1)

Answer:  0

Hint: Use ILATE ,( Inverse , Logarithm , Algebraic , Trigonometric , Exponent.)

Given:

             \int_{-2}^{2} x e^{|x|} d x

Solution:

             Consider

             f(x)=x e^{|x|}

             Now

             \begin{aligned} &f(-x)=(-x) e^{|-x|}=-x e^{|x|}=-f(x) \\ \end{aligned}

             \therefore \int_{-2}^{2} x e^{|x|} d x=0 \\

            {\left[\int_{-a}^{a} f(x) d x=\left\{\begin{array}{ll} 2 \int_{0}^{a} f(x) d x & \text { if } f(-x)=f(x) \\ 0 & \text { if } f(-x)=-f(x) \end{array}\right]\right.}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads