Get Answers to all your Questions

header-bg qa

Need solution for  RD Sharma maths Class 12 Chapter 19 Definite Integrals Exercise 19.4 (b) Question 39 textbook solution.

Answers (1)

Answer:- \frac{\pi}{4}(a+b)

Hints:-  You must know the integral rules of trignometric functions.

Given:-  \int_{0}^{\pi / 2} \frac{a \sin x+b \cos x}{\sin x+\cos x} d x

Solution : I=\int_{0}^{\pi / 2} \frac{a \cdot \sin x+b \cos x}{\sin x+\cos x}                                         ....(1)

                I=\int_{0}^{\pi / 2} \frac{a \cdot \sin (\pi / 2-x)+b \cos \left(\pi / 2^{-x)}\right.}{\sin (\pi / 2-x)+\cos (\pi / 2-x)} d x

               I=\int_{0}^{\pi / 2} \frac{a \cdot \cos x+b \sin x}{\sin x+\cos x} d x                                   .....(2)

Adding both

             \begin{aligned} &2 I=\int_{0}^{\pi / 2}(a+b) \frac{\cos x+\sin x}{\sin x+\cos x} d x \\ &2 I=\int_{0}^{\pi / 2}(a+b) \cdot d x \\ &2 I=(a+b)[x]_{0}^{\pi / 2} \end{aligned}

            \begin{aligned} &2 I=(a+b)\left(\frac{\pi}{2}\right) \\ &I=\frac{(a+b) \pi}{4} \end{aligned}

 

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads