Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 19 Definite Integrals Exercise 19.3 Question 16 Maths Textbook Solution.

Answers (1)

Answer:  5

Hint: You must know the rules of solving definite integral.

Given:

                \int_{0}^{4}|x-1| d x

Solution:

                \begin{aligned} &\mathrm{I}=\int_{0}^{4}|x-1| d x \\ & \end{aligned}

                |x-1|=\left\{\begin{array}{l} -(x-1), 0 \leq x \leq 1 \\ x-1, \quad 1 \leq x \leq 4 \end{array}\right\}

                \begin{aligned} I &=\int_{0}^{1}-(x-1) d x+\int_{1}^{4}(x-1) d x \\ & \end{aligned}

                =\left[-\left(\frac{x^{2}}{2}-x\right)\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{4} \\

                =\frac{1}{2}+8-4+\frac{1}{2}=4+1 \\

                I =5

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads