Get Answers to all your Questions

header-bg qa

Please solve RD Sharma Class 12 Chapter 19 Definite Integrals Exercise 19.4 (b) Question 27 maths textbook solution.

Answers (1)

Answer:-  -\pi \log 2

Hints:-  You must know the integral rules of logarithmic functions.

Given:-  \int_{0}^{\pi} \log (1-\cos x) d x

Solution :

\begin{aligned} &I=\int_{0}^{\pi} \log (1-\cos x) d x \\ &=\int_{0}^{\pi} \log \left(2 \sin ^{2} \frac{x}{2}\right) d x \\ &=\int_{0}^{\pi} \log 2 \cdot d x+2 \int_{0}^{\pi} \log \sin \frac{x}{2} \cdot d x \end{aligned}

\begin{array}{ll} \text { Let } t=\frac{x}{2} &\; \; \; \; \; \; x \rightarrow 0 ; t \rightarrow 0 \\ d t=\frac{1}{2} d x & \; \; \; \; \; \; x \rightarrow \pi ; t \rightarrow \frac{\pi}{2} \end{array}

\begin{aligned} &I=\log 2[x]_{0}^{\pi}+4 \int_{0}^{\frac{\pi}{2}} \log \sin t d t \\ &I=\pi \log 2+4 \times\left(\frac{-\pi}{2} \log 2\right) \\ &I=-\pi \log 2 \end{aligned}

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads