Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 19 Definite Integrals exercise Multiple choice question 26 maths textbook solution

Answers (1)

Answer:

(\log x)^{-1}(x-1) x

Given:

\int_{x^{2}}^{x^{3}} \frac{1}{\log _{e} t} d x

Hint:

This equation will solve byf'(x)formula.
 

Solution:

\begin{aligned} &f^{\prime}(x)=\frac{1}{\log x^{3}} \cdot 3 x^{2}-\frac{1}{\log x^{2}} \cdot(2 x) \\\\ &f^{\prime}(x)=\frac{3 x^{2}}{3 \log x^{3}}-\frac{2 x}{2 \log x^{2}} \end{aligned}

\begin{aligned} f^{\prime}(x) &=\frac{x^{2}}{\log x}-\frac{x}{\log x} \\\\ &=\frac{x^{2}-x}{\log x} \end{aligned}

           \begin{aligned} &=\frac{x(x-1)}{\log x} \\\\ &=(\log x)^{-1}(x-1) x \end{aligned}

 

 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads