Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 19 Definite Integrals Exercise Revision Exercise Question 41 Maths Textbook Solution.

Answers (1)

Answer:  \frac{\pi}{4}

Hint: In this Statement, we will use  \int_{0}^{a} f(x) d x  formula

Given:  \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x

Solution:

\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x

\begin{aligned} &\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \\ & \end{aligned}

I=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\cos ^{2}(\pi-x)} d x \\

=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x                

\begin{aligned} &=\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x-\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x \\ & \end{aligned}                    

I=\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x-I         

\begin{aligned} &2 I=\pi \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x \\ & \end{aligned}

2 I=\pi \int_{1}^{-1} \frac{-d t}{1+t^{2}}

\begin{aligned} &I=\frac{\pi}{2} \int_{1}^{-1} \frac{d t}{1+t^{2}} \\ & \end{aligned}

I=\frac{\pi}{2}\left[\tan ^{-1} t\right]_{-1}^{1} \\

I=\frac{\pi}{2}\left(\tan ^{-1}-\tan ^{-1}(-1)\right. \\

I=\frac{\pi}{2}\left[\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right]

\begin{aligned} &I=\frac{\pi}{2}\left[\frac{\pi}{2}\right] \\ & \end{aligned}

I=\frac{\pi}{4}

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads