Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 19 Definite Integrals Exercise Revision Exercise Question 64 Maths Textbook Solution.

Answers (1)

Answer:  \frac{1}{2} \frac{e^{4}-1}{e^{2}}

Hint: To solve the given statement we have to use the formula.

Given:  \int_{-1}^{1} e^{2 x} d x

Solution:

\begin{aligned} &\int_{a}^{b} f(x) d x=\frac{b-a}{n} \lim _{x \rightarrow \infty}[f(a)+f(a+h)+\ldots f(a+(h-1)] \\ & \end{aligned}

f(x)=e^{2 x} \\

a=-1, b=1, h=\frac{1+1}{n}=\frac{2}{n}

\begin{aligned} &\int_{1}^{1} e^{2 x} d x=\frac{2}{n^{2}} \lim _{h \rightarrow \infty}\left[e^{2 a}+e^{2(a+h)}+\ldots .+e^{2(a+(n-1) h)}\right] \\ &\end{aligned}

=\frac{2}{n} \lim _{h \rightarrow \infty}\left[e^{2 a}+e^{2 a} e^{2 h}+\ldots .+e^{2 a} e^{2(n-1) h}\right] \\

=\frac{2}{n} \lim _{h \rightarrow \infty}\left[e^{2 a}\left(1+e^{2 h}+\ldots .+e^{2(n-1) h}\right]\right. \\

=\frac{2}{n} e^{-2} \lim _{h \rightarrow \infty}\left[1+e^{2 h}+\ldots .+e^{2(n-1) h}\right]

\begin{aligned} &a=1, r=e^{2 h} \\ & \end{aligned}

S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\

\int_{1}^{1} e^{2 x} d x=\frac{2}{n} \lim _{h \rightarrow \infty}\left[e^{2 a}+e^{2 a+2 h}+\ldots .+e^{2 a+2(n-1) h}\right]

\begin{aligned} &=\frac{2}{n} \lim _{h \rightarrow \infty}\left[e^{2 a}+e^{2 a} e^{2 h}+\ldots .+e^{2 a} e^{2(n-1) h}\right] \\ & \end{aligned}

=\frac{2}{n} \lim _{h \rightarrow \infty}\left[e^{2 a}\left(1+e^{2 h}+\ldots .+e^{2(n-1) h}\right]\right. \\

=\frac{2}{n e^{2}} \lim _{h \rightarrow \infty}\left[\frac{1 \cdot\left(e^{2 / n}-1\right)}{e^{2 h}-1}\right] \\

=\frac{2}{e^{2}} \lim _{h \rightarrow \infty}\left[\frac{1 \cdot\left(e^{2 m}-1\right)}{n e^{2 h}-1}\right]

=\frac{2}{e^{2}} \lim _{h \rightarrow \infty}\left[\frac{\left.e^{2 n} e^{2 / h}-1\right)}{\left(e^{2 n}-1\right) \frac{2}{h}}\right]

\begin{aligned} &h=\frac{2}{n} \Rightarrow n=\frac{2}{h} \\ & \end{aligned}

n \rightarrow \infty \\

n \rightarrow 0

\begin{aligned} &\int_{1}^{1} e^{2 x} d x=\frac{2}{n} \lim _{h \rightarrow \infty}\left[e^{2 a}+e^{2 a+2 h}+\ldots .+e^{2 a+2(n-1) h}\right] \\ & \end{aligned}

=\frac{2}{n^{2}} \lim _{h \rightarrow \infty}\left[e^{2 a}+e^{2 a} e^{2 h}+\ldots .+e^{2 a} e^{2(n-1) h}\right] \\

=\frac{2}{n^{2}} \lim _{h \rightarrow \infty}\left[e^{2 a}\left(1+e^{2 h}+\ldots .+e^{2(n-1) h}\right]\right. \\

=\frac{2}{n e^{2} \lim _{h \rightarrow \infty}}\left[\frac{1 \cdot\left(e^{2 m n}-1\right)}{e^{2 h}-1}\right] \\

=\frac{2}{e^{2}} \lim _{h \rightarrow \infty}\left[\frac{1 \cdot\left(e^{2 n n}-1\right)}{n e^{2 h}-1}\right]

\begin{aligned} &=\frac{2}{e^{2}} \times\left(e^{4}-1\right) \lim _{n \rightarrow 0}\left[\frac{1}{\left(\frac{e^{2 n}-1}{h}\right) \times 2}\right] \\ & \end{aligned}

=\frac{2}{e^{2}} \times\left(e^{4}-1\right) \lim _{n \rightarrow 0}\left[\frac{1}{\left(\frac{e^{2 n}-1}{h}\right) \times 4}\right]

\begin{aligned} &=\frac{2\left(e^{4}-1\right)}{4 e^{2}} \lim _{n \rightarrow 0}\left[\frac{1}{\left(\frac{e^{2 n}-1}{h}\right)}\right] \\ & \end{aligned}

=\frac{\left(e^{4}-1\right)}{2 e^{2}} \\

\int_{-1}^{1} e^{2 x} d x=\frac{1}{2} \frac{e^{4}-1}{e^{2}}

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads