Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 Chapter Definite integrals exercise 19.2 question 7 maths textbook solution.

Answers (1)

\frac{1}{2}(e-1)

Hint: We use indefinite integral formula then put limits to solve this integral.

Given: \int_{0}^{1} x e^{x^{2}} d x

Solution: I=\int_{0}^{1} x e^{x^{2}} d x

Put x^2=t

2x\; \; dx=dt

dx=\frac{dt}{2x}

When x=0  then t=0  and when x=1  then t=1

\begin{aligned} &I=\int_{0}^{1} x e^{t} \frac{d t}{2 x} \\ &=\frac{1}{2} \int_{0}^{1} e^{t} d t \end{aligned}

=\frac{1}{2}[e^t]_0^1                                             [\int e^t\; dt =e^t+c]

=\frac{1}{2}[e^1-e^0]

=\frac{1}{2}(e-1)

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads