Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class12 Chapter Definite Integrals exercise 19.2 question 11.

Answers (1)

Answer\frac{64}{231}

Hint: We use indefinite integral formula then put limits to solve this integral.

Given:\int_{0}^{\frac{\pi}{2}}\sqrt{\sin \phi}\cos^5 \phi d\phi

Solution: \int_{0}^{\frac{\pi}{2}}\sqrt{\sin \phi}\cos^5 \phi d\phi

Put \sin \phi=t

\cos \phi d\phi =dt

d\phi =\frac{dt}{cos\phi}

When \phi =0  then t=0  and when \phi =\frac{\pi}{2}  then t=1

\begin{aligned} &=\int_{0}^{1} \sqrt{t} \cos ^{5} \phi \frac{d t}{\cos \phi} \\ &=\int_{0}^{1} \sqrt{t} \cos ^{4} \phi d t \\ &=\int_{0}^{1} t^{\frac{1}{2}}\left(\cos ^{2} \phi\right)^{2} d t \end{aligned}

\begin{aligned} &=\int_{0}^{1} t^{\frac{1}{2}}\left(1-\sin ^{2} \phi\right)^{2} d t \\ &=\int_{0}^{1} t^{\frac{1}{2}}\left(1-t^{2}\right)^{2} d t \\ &=\int_{0}^{1} t^{\frac{1}{2}}\left(1+t^{4}-2 t^{2}\right) d t \end{aligned}

\begin{aligned} &=\int_{0}^{1}\left(t^{\frac{1}{2}}+t^{4+\frac{1}{2}}-2 t^{2+\frac{1}{2}}\right) d t \\ &=\int_{0}^{1} t^{\frac{1}{2}} d t+\int_{0}^{1} t^{\frac{9}{2}} d t-2 \int_{0}^{1} t^{\frac{5}{2}} d t \end{aligned}

\begin{aligned} &=\left[\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+\frac{t^{\frac{9}{2}+1}}{\frac{9}{2}+1}-\frac{2 t^{\frac{5}{2}+1}}{\frac{5}{2}+1}\right]_{0}^{1} \\ &=\left[\frac{t^{\frac{3}{2}}}{3}\right]_{0}^{1}+\left[\frac{t^{\frac{11}{2}}}{\frac{11}{2}}\right]_{0}^{1}-2\left[\frac{t^{\frac{7}{2}}}{\frac{7}{2}}\right]_{0}^{1} \end{aligned}

\begin{aligned} &=\frac{2}{3}\left[t^{\frac{3}{2}}\right]_{0}^{1}+\frac{2}{11}\left[t^{\frac{11}{2}}\right]_{0}^{1}-2 \times \frac{2}{7}\left[t^{\frac{7}{2}}\right]_{0}^{1} \\ &=\frac{2}{3}\left[1^{\frac{3}{2}}-0^{\frac{3}{2}}\right]+\frac{2}{11}\left[1^{\frac{11}{2}}-0^{\frac{11}{2}}\right]-\frac{4}{7}\left[1^{\frac{7}{2}}-0^{\frac{7}{2}}\right] \\ &=\frac{2}{3}[1-0]+\frac{2}{11}[1-0]-\frac{4}{7}[1-0] \end{aligned}

=\frac{2}{3}+\frac{2}{11}-\frac{4}{7}

=\frac{154+42-132}{231}

=\frac{196-132}{231}

=\frac{64}{231}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads