Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma Maths Class12 Chapter Definite Integrals exercise 19.2 question 15.

Answers (1)

Answer: \frac{\pi \sqrt{\pi}}{12}

Hint: We use indefinite formula then put limits to solve this integral.

Given: \int_{0}^{1}\frac{\sqrt{\tan ^{-1}x} }{1+x^2}dx

Solution: I=\int_{0}^{1}\frac{\sqrt{\tan ^{-1}x} }{1+x^2}dx

Put \tan^{-1}x=t

\frac{1}{1+x^2}dx=dt

dx=(1+x^2)dt

When x=0  then t=0  and

when x=1  then t =\frac{\pi}{4}

\begin{aligned} &I=\int_{0}^{\frac{\pi}{4}} \frac{\sqrt{t}}{1+x^{2}}\left(1+x^{2}\right) d t \\ &=\int_{0}^{\frac{\pi}{4}} \sqrt{t} d t \end{aligned}

\begin{aligned} &=\int_{0}^{\frac{\pi}{4}} t^{\frac{1}{2}} d t \\ &=\left[\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]_{0}^{\frac{\pi}{4}} \\ &=\left[\frac{t^{\frac{3}{2}}}{3}\right]_{0}^{\frac{\pi}{4}} \\ &=\frac{2}{3}\left[t^{\frac{3}{2}}\right]_{0}^{\frac{\pi}{4}} \\ &=\frac{2}{3}\left[\left(\frac{\pi}{4}\right)^{\frac{3}{2}}-0\right] \end{aligned}

\begin{aligned} &=\frac{2}{3}\left[\frac{\pi^{\frac{3}{2}}}{2^{2 \times \frac{3}{2}}}\right] \\ &=\frac{2}{3}\left[\frac{\pi \sqrt{\pi}}{2^{3}}\right] \\ &=\frac{2 \pi \sqrt{\pi}}{3 \times 8} \\ &=\frac{\pi \sqrt{\pi}}{12} \end{aligned}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads