Get Answers to all your Questions

header-bg qa

explain solution RD Sharma class 12 chapter 5 Determinants exercise Fill in the blanks question 32 maths

Answers (1)

Answer: \frac{1}{2}

Hint: Here we use basic concept of determinant of matrix.

Given: \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1 & 1 & 1+\cot \theta \end{array}\right]

Solution: 

            \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1 & 1 & 1+\cot \theta \end{array}\right]

            \begin{aligned} &C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-1 \\ &\Delta=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 1 & \sin \theta & 0 \\ 1 & 0 & \cot \theta \end{array}\right] \\ &1\left[\begin{array}{cc} \sin \theta & 0 \\ 0 & \cot \theta \end{array}\right]-0\left[\begin{array}{cc} 1 & 0 \\ 1 & \cot \theta \end{array}\right]+0\left[\begin{array}{cc} 1 & \sin \theta \\ 1 & 0 \end{array}\right] \end{aligned}

            \begin{aligned} &1(\sin \theta \times \cot \theta)-0(0)+0(0) \\ &\sin \theta \times \cot \theta-0+0 \\ &\sin \theta \times \frac{\cos \theta}{\sin \theta}=\cos \theta \\ &\Delta=\cos \theta \end{aligned}

            Let's \Delta =0

             \cos \; \theta =0=\frac{\pi }{2} \left [ So,maximum\; value\; is\; \frac{1}{2}\; of \; \cos \theta \right ]

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads