Get Answers to all your Questions

header-bg qa

Need Solution for R.D.Sharma Maths Class 12 Chapter 5 determinants  Exercise 5.4 Question 26  Maths Textbook Solution.

Answers (1)

Answer: \mathrm{x}=\frac{5}{3}, \mathrm{y}=k-\frac{4}{3} \text { and } \mathrm{z}=\mathrm{k}

Hint: Use Cramer’s rule for system of linear equations.

Given:

\begin{aligned} &x-y+z=3 \\ &2 x+y-z=2 \\ &-x-2 y+2 z=1 \end{aligned}

Solution:

\begin{gathered} \mathrm{AX}=\mathrm{B} \\ \qquad\left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & -2 & 2 \end{array}\right]\left[\begin{array}{l} x \\ y \\ z \end{array}\right]=\left[\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right] \\ \text { Where } \mathrm{A}=\left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & -2 & 2 \end{array}\right], \mathrm{X}=\left[\begin{array}{l} x \\ y \\ z \end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right] \end{gathered}

Solving determinant,

|\mathbf{A}|=\left|\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & -2 & 2 \end{array}\right|

Expanding along 1^{st} row,

\begin{aligned} &=1(2-2)+1(4-1)+1(-4+1) \\ &=0+3-3 \end{aligned}

|A| = 0 \RightarrowSystem of linear equations have infinite number of solutions.

Let z = k

\Rightarrow x-y+k=3                                                                            ...(1)

\Rightarrow 2 \mathrm{x}+\mathrm{y}-\mathrm{k}=2                                                                        .....(2)

From (1) and (2),

\Rightarrow x-y=3-k                                                                          ......(3)

\Rightarrow 2 \mathrm{x}+\mathrm{y}=2+\mathrm{k}                                                                        .......(4)

Adding (3) and (4),

\begin{aligned} &\Rightarrow 3 \mathrm{x}=5 \\ &\therefore x=\frac{5}{3} \end{aligned}

From (3),

\Rightarrow \frac{5}{3}-y=3-k

\begin{aligned} &y=\frac{5}{3}-3+k \\ &y=\frac{5-9+3 k}{3} \\ &y=\frac{3 k-4}{3} \\ &y=k-\frac{4}{3} \\ &\therefore z=k \end{aligned}

Concept: Solving matrix of order 3x3 by solving linear equations

Note: When D = 0, there is either no solution or infinite solutions.

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads