Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Determinants exercise multiple choise question 1 maths textbook solution

Answers (1)

Answer:

Correct option : (d)

        i.e. A+B=0

Hint:

        I\! f\; \; \; \; det(A+B)=0\: \Rightarrow det[a_{ij}+b_{ij}]=0

Given:

Here given that,

A and B are square matrices of order 2.

We have to find that det(A+B)=0 is possible in which condition.

Solution:

Determinant A denoted as [aij] and determinant B as [bij]

        \Rightarrow (A+B)=[a_{ij}]+[b_{ij}]

        \Rightarrow (A+B)=[a_{ij}+b_{ij}]

        \Rightarrow det(A+B)=det[a_{ij}+b_{ij}]

Here det(A+B)=0

        \Rightarrow det[a_{ij}+b_{ij}]=0

        \Rightarrow a_{ij}+b_{ij}=0

        \Rightarrow A+B=0

Hence option (d) is correct.

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads