Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Determinants exercise multiple choise question 29 maths textbook solution

Answers (1)

Answer:

Correct option (b)

Hint:

Solve determinant by applying row and column operation.

Given:

\begin{aligned} &\text { Let } \Delta=\left|\begin{array}{ccc} x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x \end{array}\right| \end{aligned}

We have to find the value of \Delta

Solution:

\begin{aligned} &\text { Here } \: \: \Delta=\left|\begin{array}{ccc} x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x \end{array}\right| \end{aligned}

Applying R1 → R1 - R2

        \Rightarrow \Delta =\left|\begin{array}{ccc} -2y & y &y \\ x+2 y & x & x+y \\ x+y & x+2 y & x \end{array}\right|

Applying R3 → R3 - R2

        \Rightarrow \Delta =\left|\begin{array}{ccc} -2y & y &y \\ x+2 y & x & x+y \\ -y & 2 y & -y \end{array}\right|

Taking common y from R1 and R3

        \Rightarrow \Delta =y^{2}\left|\begin{array}{ccc} -2 & 1 &1 \\ x+2 y & x & x+y \\ -1 & 2 & -1 \end{array}\right|

Applying C2 → C2 + 2C1; C3 → C3 -C1

        \Rightarrow \Delta =y^{2}\left|\begin{array}{ccc} -2 & -3 &3 \\ x+2 y & x & x+y \\ -1 & 0 & 0 \end{array}\right|

Expanding along R3, we get

        \begin{aligned} &\Delta=y^{2}[(-1)(3 y-9 x-12 y)] \\ &\Delta=y^{2}[9 x+9 y] \end{aligned}

        \begin{aligned} &\Delta=9y^{2}[ x+ y] \end{aligned}

\begin{aligned} &\text { Hence } \left|\begin{array}{ccc} x & x+y & x+2 y \\ x+2 y & x & x+y \\ x+y & x+2 y & x \end{array}\right| \end{aligned}=9y^{2}[x+y]

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads