Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter Determinants exercise multiple choise question 10

Answers (1)

Answer:

Correct option (a)

Hint:

Solve given determinant

Given:

        Here\; \begin{vmatrix} -2a &a+b &a+c \\ b+a &-2b &b+c \\ c+a &c+b &-2c \end{vmatrix} is \; given

The three factor are given, we have to find another one factor.

Solution:

        \begin{vmatrix} -2a &a+b &a+c \\ b+a &-2b &b+c \\ c+a &c+b &-2c \end{vmatrix}

Appling C1→C1+C2 , we get

        =\begin{vmatrix} b-a &a+b &a+c \\ a-b &-2b &b+c \\ a+b+2c &b+c &-2c \end{vmatrix}

Appling C2→C2+C3 , we get

        =\left | b-a2a+b+ca+ca-bc-bb+ca+b+2cb-c-2c \right |

Appling R3→R3+R2 , we get

        =\begin{vmatrix} b-a &2a+b+a &a+c \\ a-b &c-b &b+c \\ 2(c+a) &0 &b-c \end{vmatrix}

Appling R2→R2+R1 , we get

        =\begin{vmatrix} b-a &2a+b+a &a+c \\ 0 &2(a+c) &a+b+2c \\ 2(c+a) &0 &b-c \end{vmatrix}

Expanding along C1 , we get

        =(b-a)[2(a+c)(b-c)]+2(a+c)[(2a+b+c)(a+b+2c)-2(a+c)^{2}]

        =2(a+c)[(b-a)(b-c)+(2a+b+c)(a+b+2c)-2(a+c)^{2}]

        =2(a+c)[b^{2}-bc-ab+ac+2a^{2}+2ab+4ac+ab+b^{2}+2bc+ac+bc+2c^{2}-2a^{2}-2c^{2}-4ac]

        =2(a+c)[2b^{2}+2ab+2bc+2ac]

        =4(a+c)[b^{2}+ab+bc+ca]

        =4(a+c)(a+b)(b+c)

Hence another factor of the given determinant is 4.

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads