Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter Determinants exercise multiple choise question 14

Answers (1)

Answer:

Correct option (c)

Hint:

Simply solve this determinant

Given:

        A_{r}=\left|\begin{array}{ccc} 1 & r & 2^{r} \\ 2 & n & n^{2} \\ n & \frac{n(n+1)}{2} & 2^{n+1} \end{array}\right|

We have to find

         \sum_{r=1}^{n}A^{r}

Solution:

If

        A_{r}=\left|1\, r\, 2^{r}\, 2\, n\, n^{2}\, n\, \frac{n(n+1)}{2}\, 2^{n+1}\right|

        \Rightarrow \sum_{r=1}^{n}A_{r}=\left| n\frac{n(n+1)}{2} 2^{n+1}-2\; 2\; n\; n^{2}\; n\frac{n(n+1)}{2} 2^{n+1} \right|

Since,\; \; \sum_{r=1}^{n}r=1+2+3+.....+n\; \; =\frac{n(n+1)}{2}

        \sum_{r=1}^{n}2^{r}=2+2^{2}+2^{3}+.....+2^{n}\; \; =\frac{2(2^{n}-1)}{2-1}=2^{n+1}-2

Now applying, R1→R1-R3

        \Rightarrow \sum_{r=1}^{n}A_{r}=\left | 0-2\; 2\; n\; n^{2}\; n\frac{n(n+1)}{2}2^{n+1} \right |

        \Rightarrow \sum_{r=1}^{n}A_{r}=-2[n(n+1)-n^{2}]

        \Rightarrow \sum_{r=1}^{n}A_{r}=-2[n^{2}+n-n^{2}]

        \Rightarrow \sum_{r=1}^{n}A_{r}=-2n

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads