Get Answers to all your Questions

header-bg qa

Explain solution for  RD Sharma Class 12 Chapter 19 Definite Integrals Exercise 19.4 (b) Question 25 Subquestion (i) maths textbook solution.     

Answers (1)

Answer:- 0

Hints:-  You must know the integration rules of logarithmic functions.

Given:-  \int_{-1}^{1} \log \left(\frac{2-x}{2+x}\right) d x

Solution :

\begin{aligned} &f(x)=\log \left(\frac{2-x}{2+x}\right) \\ &f(-x)=\log \left(\frac{2-x}{2+x}\right) \end{aligned}

              \begin{aligned} &=\log (2+x)-\log (2-x) \\ &=-[\log (2-x)-\log (2+x)] \\ &=-\log \left(\frac{2-x}{2+x}\right) \end{aligned}

\begin{aligned} &=-f(x) \\ f(-x) &=-f(x) \end{aligned}

f(x) is an odd function

So =\int_{-1}^{1} \log \left(\frac{2-x}{2+x}\right) \cdot d x=0

 

Posted by

infoexpert23

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads